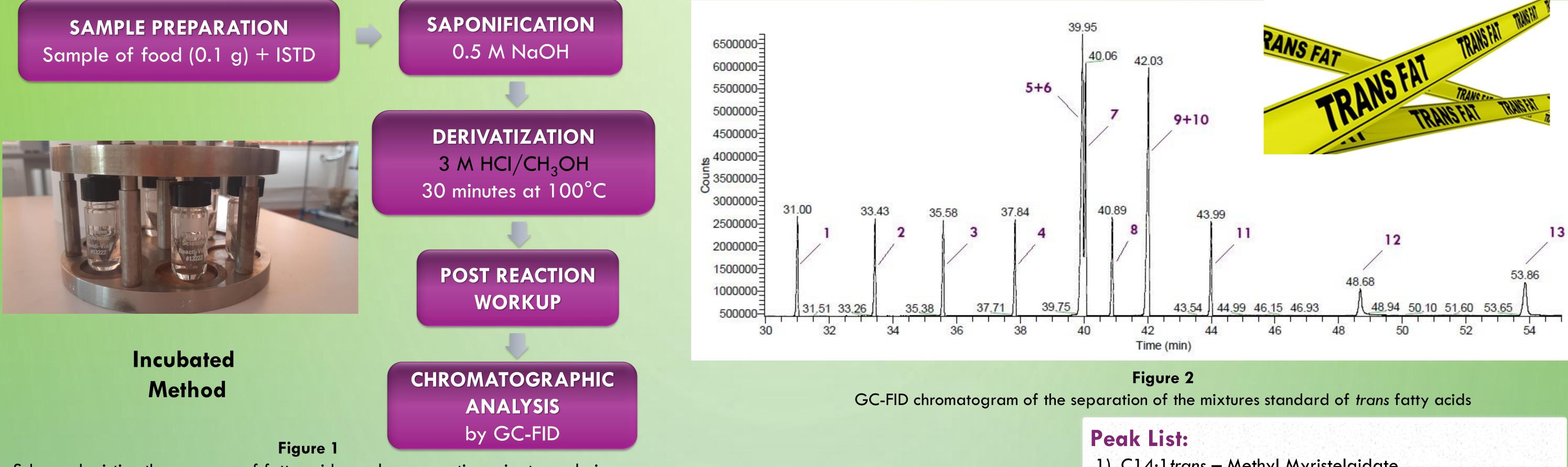


Assessment of *trans* fatty acids content in food from Romanian market

F D Covaciu¹, I Feher¹, A Dehelean¹, V C Floare-Avram¹ and D A Magdas¹


¹ National Institute for Research and Development of Isotopic and Molecular Technologies 67-103 Donat, 400293 Cluj-Napoca, Romania E-mail: florina.covaciu@itim-cj.ro

BACKGROUND

Trans fatty acids are chemically "monounsaturated" or "polyunsaturated". They are considered so different from the *cis* monounsaturated or polyunsaturated fatty acids that they can't be legally designated as unsaturated for purposes of labelling. Gas chromatography (GC) represent method most commonly used to identify and quantify *trans* fatty acids. The law in Romania (No. 182/2020) requires that *trans* fats content is included in labelling of food and not exceed 2g/100g of fat. The quantitation and identification of *trans* fatty acid isomers by GC is difficult because of the wide range of fatty acid isomers present in complex food samples. Accurate information on the content of *trans* fat in foods can come from proper techniques for extracting lipids, saponification, and methylation of fatty acids. The GC-FID technique was used for detection, separation, identification and quantification of *trans* fatty acid in food. Lipids were extracted from the food and fatty acids converted into methyl esters and analysed by GC.

MATERIALS AND METHODS

RESULTS AND DISCUSION

Scheme depicting the sequence of fatty acid sample preparation prior to analysis

Table 1

Equations, correlation coefficients, LOD, LOQ and recovery percentage of the trans fatty acids (TFAs) determined in the mixtures standard

TFAs	Calibration curve equation	Coefficient correlation (r ²)	LOD [µg/ml]	LOQ [µg/ml]	Recovery [%]
C14:1 trans	y = 18873x - 434472	0.9903	0.09	0.27	98.21
C15:1 trans	y = 18784x - 383884	0.9907	0.08	0.24	97.22
C16:1 trans	y = 18873x - 356196	0.9868	0.09	0.27	96.83
C17:1 trans	y = 18414x - 308274	0.9877	0.08	0.24	98.54
C18:2 trans	y = 44589x - 688326	0.9901	0.07	0.21	96.99
C19:1 trans	y = 71377x - 2E+06	0.9898	0.06	0.18	96.37
C20:1 trans	y = 19800x - 449163	0.9886	0.05	0.15	95.72
C22:1 trans	y = 12596x - 352393	0.9832	0.03	0.10	94.41
C18:1 trans	y = 16812x - 445617	0.9883	0.03	0.10	93.96

Cl 4:1 trans – Methyl Myristelaidate
Cl 5:1 trans - Methyl 10-Transpentadecenoate
Cl 6:1 trans – Methyl Palmitelaidate
Cl 7:1 trans – Methyl 10-Transheptadecenoate
Cl 8:1 trans – Methyl Petroselaidate
Cl 8:1 trans – Methyl Elaidate
Cl 8:1 trans – Methyl Elaidate
Cl 8:2 trans – Methyl Transvaccenate
Cl 8:2 trans, trans – Methyl Linoelaidate
Cl 9:1 trans – Methyl 7-Transnonadecenoate
Cl 9:1 trans – Methyl 10-Transnonadecenoate
Cl 9:1 trans – Methyl 11-Transeicosenoate
Cl 22:1 trans – Methyl Brassidate
Cl 8:1 trans – Methyl Ricinelaidate

Acknowledgments: The financial support for this work was provided by the P2.1-PED-2019-3502 Program, Project number 354PED/2020 ("Assessment of content and distribution of trans fatty acids in food productsN-III-P2- from Romanian market"). The project was supported by the UEFISCDI.