

13th International Conference PROCESSES IN ISOTOPES AND MOLECULES PIM-2021

Effect of ultrasound-assisted extraction parameters on bioactive compounds from grape marc Aliona Ghendov-Mosanu¹, Ildico Lung², Maria-Loredana Soran², Ocsana Ileana Opriș², Rodica Sturza¹

¹Technical University of Moldova, 168 Stefan cel Mare, Blvd. MD-2004 Chisinau, Republic of Moldova ²National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania

GOAL OF THE STUDY. Research of the influence of ultrasound-assisted extraction parameters on the extraction efficiency of biologically active compounds from grape marc.

METHODOLOGY OF THE INVESTIGATION. Extraction of biologically active compounds from grape marc by ultrasound-assisted extraction was performed at the concentration of 60% (v/v) EtOH, temperature of 30 and 65°C, duration of ultrasound application - 10 and 60 min, frequency of 35 kHz and at a power of 95 W. The total content of polyphenols, anthocyanins and the antioxidant activity by DPPH were analyzed in extracts.

MAIN RESULTS FROM THE STUDY. Figure 1 a-b were shown that the application of ultrasound for 10 minutes, and the extraction temperature changed from 30 to 65 °C, TPC increased by 10.6%, and in the case of TAC increased by 13.4%. In the case of applying UAE for 60 min, the extraction yield of TPC increased by 11.9% and in the case of TAC by 14.3%. It was also found that at the extraction temperature of 65°C, increase of ultrasound application time from 10 to 60 min, the TPC and TAC in the marc extracts decreased by 3.7% and by 7.6% respectively. The higher values of antioxidant activity correspond to the extraction yield of phenolic compounds at a temperature of 65 °C and the duration of ultrasound application 10 min, figure 1c.

of biologically active compounds from grape marc: a) total polyphenol content; b) total anthocyanin content; c) antioxidant activity; d) Sobol's index.

Sensitivity analysis (figure 1d) showed that the extraction temperature has a more essential influence on the of bioactive compounds content in the grape marc extracts than the duration of ultrasound application.

CONCLUSIONS. The results of the research showed that the use of by-products derived from the wine industry would allow to reduce to a minimum the amount of residues and to obtain valuable extracts of bioactive compounds with multiple fields of application.

ACKNOWLEDGMET. The authors would like to thank the Project 2SOFT/1.2/83 **Intelligent valorisation of agro-food industrial wastes (INTELWASTES)**, funded by the European Union, within the program Cross border cooperation Romania - Republic of Moldova 2014-2020.