COLD PLASMA PROCESSING OF SEEDS AS NON-CHEMICAL, GREEN **TECHNOLOGY FOR PRODUCTION STIMULATION**

Iuliana MOTRESCU, Mihai Alexandru CIOLAN[#], Anca Elena CALISTRU, Gerard JITĂREANU

Research Institute for Agriculture and Environment *Iasi University of Life Sciences, Romania imotrescu@yahoo.com, +40 232 407 527*

Introduction

Plasma agriculture **\$** sustainable agriculture **⇒**"focuses on producing long-term crops while having minimal effects on the environment"

- \rightarrow reduce the use of fertilizers
- \rightarrow minimize the use of pesticides
- → maintain economic stability of farms
- → help framers improve their techniques and quality of life

[#]Research Center on Advanced Materials and Technologies, Alexandru Ioan Cuza University of Iasi, Romania

- **(1)** Economic impact \rightarrow reduce the germination and development time
 - \rightarrow enhance the properties of the plants
 - \rightarrow increase the shelf-life
- **②** Producers and consumers' safety
 - \rightarrow no-chemicals used
 - \rightarrow inactivation of microorganisms

Motivation

Why sprouts? - very popular in some countries (especially from Asia)

- contain a wide range of bioactive compounds = benefic for human health
- many outbreaks are known (e.g. Listeria, E. coli, Salmonella)

Why plasma treatment? \rightarrow plasma is a powerful chemical reactor

 \rightarrow nonthermal plasma – can be used for biological interfaces

Purpose

- Address the needs of local small vegetable farmers for green technologies
- Detailed study from seed modification to sprouts production
- ✓ Contribution of reactive species on the modifications

- \rightarrow reduce the costs of sprout production
- \rightarrow increase the consumption safety and viability on shelf

Experimental design

Schematic representation of the surface dielectric barrier discharge (sDBD) for seeds treatment

Seeds analysis

ESEM images of seeds surfaces (untreated and treated in direct plasma 30 s with sDBD at different voltages)

 \rightarrow for direct treatments the damage increases with the applied voltage for the

same exposure time

 \rightarrow slight disintegration of the cell walls on the outer epidermis

✓ Differences between species

-with cover (the device is covered to keep the reactive sp.)

-reactive species are present (

Seeds:

Bassica oleranceae L. var. italica – broccoli

Germination potential for broccoli sprouts seeds in 30 s to sDBD produced with different voltages with and without cover (p<0.005).

Emission spectrum of sDBD in atmospheric air

 \rightarrow irregular shaped agglomerations

 \rightarrow morphological changes in the seed coat structure

→much stronger effects in the case of concentrated reactive species

ESEM images of seeds surface (different processing times, 11 kV sDBD)

decrease of chll a/chll b \Rightarrow indicator of photosynthesis efficiency (negative influence) In all cases the sprouts are influenced by the treatment; The changes might be responses induced by stress responses towards the reactive species

Conclusions

→ exposure to sDBD can both lead to stimulation of germination and plant growth, but can also have

- a **negative impact** on plant development
- \rightarrow the modifications are stronger in the case of concentrated reactive species exposure
- \rightarrow plasma can be applied as green technology for growth stimulation of plants