

# Synthesis, physicochemical properties, crystal molecular structure and DFT investigation of an organobismuth(III) bis(dimethyldithiocarbamate)

Andreea Anton, Albert Soran\*, Cristian Silvestru

Department of Chemistry, Supramolecular Organic and Organometallic Chemistry Centre (SOOMCC), Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 11 Arany Janos, 400028 Cluj-Napoca, ROMANIA

Email: albert.soran@ubbcluj.ro

# **1. Introduction**

Metal dithiocarbamates were reported to exhibit a wide range of applications, e.g. potential biological activity and uses in medicine or single source precursors for metal sulfides.

Organobismuth(III) dithiocarbamates could be used as single source precursors for obtaining  $Bi_2S_3$ , an *n*-type semiconductor material containing environmentally benign elements.

With a bandgap of 1.3-1.7 eV, which can be adjusted depending on the size and shape of particles, Bi<sub>2</sub>S<sub>3</sub> has found applications in thermoelectrics, photodetectors, photosensitizers, solar cells and supercapacitors.

In this work we report the synthesis and characterization of a new organobismuth(III) dithiocarbamate,  $[2-(Me_2NCH_2)C_6H_4]Bi(S_2CNMe_2)_2$  and we investigate its potential as single source precursors for obtaining  $Bi_2S_3$ . To better understand the nature of the intramolecular bonds as well as intermolecular interactions DFT, NBO and Hirshfeld surface analyses were carried out.

### Hirshfeld surface analysis





## 2. Results and discussions

#### Synthetic route



TG-DSC analysis

## **Table 1.** Weight loss steps involved in the TGA of compound 4

| Process                                                                              | Temperature<br>(°C) | Theoretical<br>weight loss<br>(%) | Experimental<br>weight loss<br>(%) |
|--------------------------------------------------------------------------------------|---------------------|-----------------------------------|------------------------------------|
| 2 $C_{15}H_{24}BiN_{3}S_{4}(5) \longrightarrow Bi_{2}S_{3} + C_{30}H_{48}N_{6}S_{5}$ | 220-320             | 55.95                             | 55.61                              |
| $Bi_2S_3 + 9/2 O_2 \longrightarrow Bi_2O_3 + 3 SO_2$                                 | 450-1000            | 3x1.376 = 4.13                    | 5.37                               |
|                                                                                      | Total               | 60.08                             | 60.98                              |

 Table 2. Experimental specific enthalpies for compound 4 from DSC curve

| No. | Nature     | On set (°C) | On set (°C) Maximum (°C) |       |
|-----|------------|-------------|--------------------------|-------|
| 1   | exothermic | 299.21      | 311.26                   | 205.0 |
| 2   | exothermic | 443.18      | 443.18                   | 341.7 |
| 3   | exothermic | 513.91      | 534,88                   | 268.7 |

Figure 5. Hirshfeld surface for 4, mapped over  $d_{norm}$  over the range -0.010 to +1.367 arbitrary units (a. u.),  $d_i$ over the range 1.053 to +2.943 a. u., and  $d_e$  over the range 1.053 to +2.752.



Figure 6. Decomposed two-dimensional fingerprint plots for 4 showing the percentage contribution to Hirshfeld  $d_{norm}$  mapped surface for each type of interaction.





#### Crystal structure determination



**Figure 1.** The molecular structure of the  $pS_N$ isomer of 4 in the asymmetric unit, shown with 30% probability ellipsoids.

Figure 2. Dimeric units formed through weak Bi…S and N···H interactions between the  $pR_N$  isomer (green aromatic ring) and  $pS_N$  isomer (blue aromatic ring) of 4 (hydrogen atoms not involved in interactions are omitted for clarity).

**Figure 7**. Localization of the C–H··· $\pi$  (*left*) and C-H···N (*right*) interactions on the Hirshfeld surface mapped with  $d_{norm}$  showing the neighboring molecules involved.







**HOMO** (E = -5.64 eV)

**HOMO-1** (E = -5.77 eV)

Figure 8. Isosurfaces (with 0.05 isovalue) of selected molecular orbitals of 4.



Figure 3. Intermolecular associations between dimeric units through C–H··· $\pi$  contacts (*red* fragmented lines) in the crystal of 4 (hydrogen atoms not involved in interactions are omitted for clarity).

Figure 4. View along the *a* axis of the unit cell showing the supramolecular network arising from weak C-H···S interactions (orange fragmented line) in the crystal of 4. Dimeric units are between the *black* fragmented lines





Figure 9. Electrostatic surface potential map (higher electron density regions are in *orange-red* and lower electron density regions are in *blue*) in the molecule of 4.

# Conclusions

Compound 4 shows clean decomposition to  $Bi_2S_3$  in the 220-320°C temperature range and could be a good candidate as a single source precursor for  $Bi_2S_3$ .

In the crystal structure of compound 4 weak Bi $\cdots$ S, C–H $\cdots$ S, C–H $\cdots$ N and C–H $\cdots\pi$  interactions were identified and also confirmed by analysis of Hirshfeld surface.

The DFT and NBO analysis revealed that Bi participates in bonding with valence p orbitals; the s valence orbital being mainly nonbonding.

Several stabilizing 3c-4e interactions involving Bi, N, and S favor coordination of the ligands to the metal center. The charge distribution over the molecule correlates well we the observed interactions in the crystal

#### Acknowledgements

This work was supported by a grant of the Ministry of Research, Innovation and Digitization, CNCS/CCCDI – UEFISCDI, project number PN-III-P4-ID-PCE-2020-2651, within PNCDI III