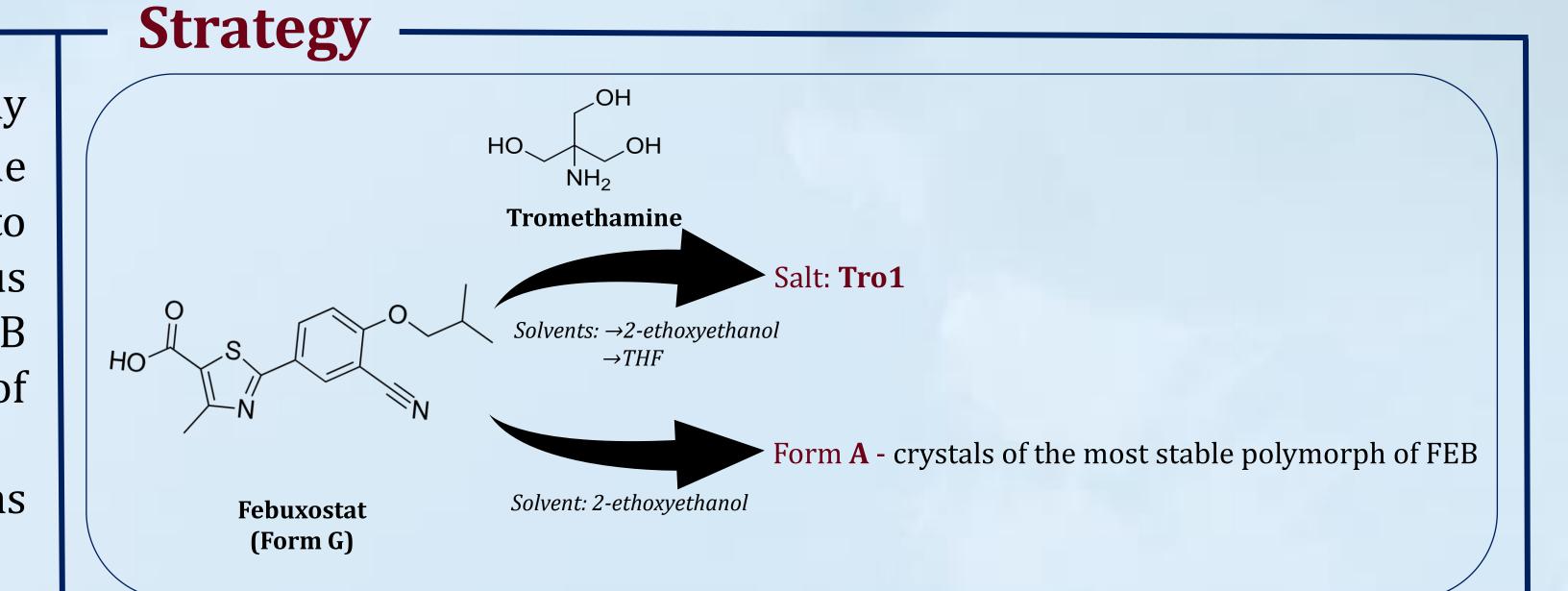


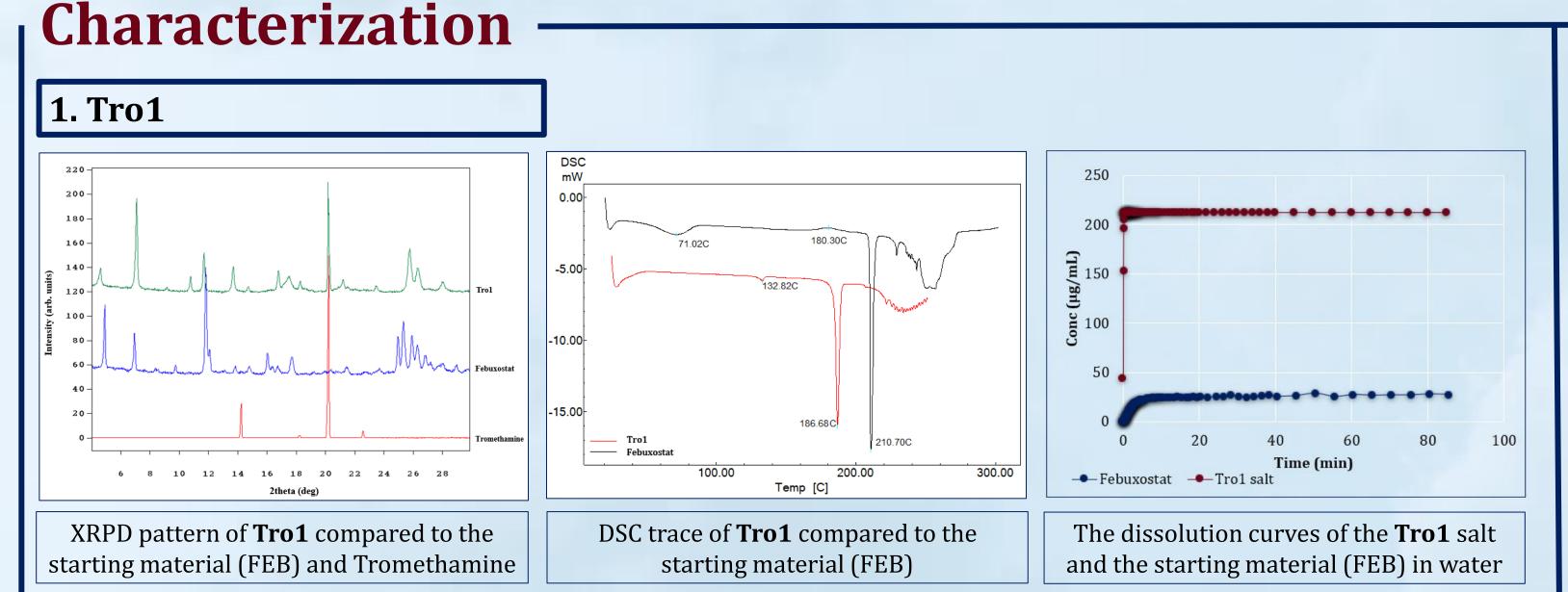
Crystallization process development of Febuxostat most stable polymorph and of a soluble salt thereof

D. Ungur^{1, 2}, C. Brăilă¹, M. David¹, D. Pop^{1, 3}, T. Tămaș², I. Kacso⁴, X. Filip⁴, M. Pop¹

¹ TeraCrystal, Cluj-Napoca 400293, Romania

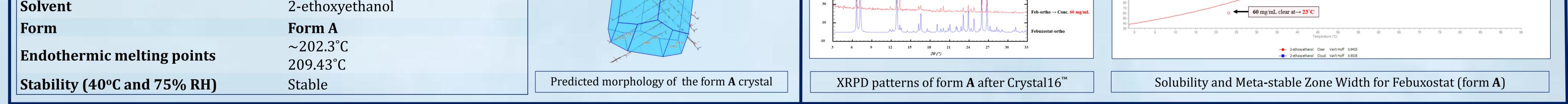

² "Babeş-Bolyai" University, Faculty of Biology and Geology, 400006 Cluj-Napoca, Romania


³ "Babeş-Bolyai" University, Faculty of Chemistry and Chemical Engineering, 40028 Cluj-Napoca, Romania


⁴ Molecular and Biomolecular Physics Department, National Institute for R&D of Isotopic and Molecular Technologies, Cluj-Napoca 400293, Romania

Introduction

Hebuxostat (FEB) is an active pharmaceutical ingredient (API), poorly water-soluble and therefore poorly bioavailable. FEB is used for the treatment of hyperuricemia in gout, as inhibitor of xanthine oxidase, to reduce uric acid production. With the aim of improving the aqueous solubility, we investigated the crystallization process of the FEB tromethamine salt (Tro1). In addition, we were able to grow crystals of the most stable polymorph of FEB, designated as form A in the literature. The crystallization process development of the Tro1 and form A was performed in a controlled manner using the Crystal16^m. The crystallization process parameters were established by determining the Meta-stable Zone Width (MSZW) while performing two thermal cycles in a suitable solvent system (2-ethoxyethanol) using a broad temperature range (5 - 90°C) and different concentrations. The formation of Tro1 and form A was evidenced by X-ray powder diffraction. We can conclude that Tro1 can be reliably crystallized in 2-ethoxyethanol by using high starting concentrations (> 200 mg/mL). Furthermore, crystals of form A were successfully grown in the same solvent at concentrations above 100 mg/mL. Crystal structure determination of form A will be attempted in a future work.



Crystallization using Crystal16[™]

			1. Tro1			
1. Tro1	DSC	250	Concentration of FEB (mg/mL)	Ratio Feb:Tro	Solvent	Observations after analysis at Crystal16TM Form by XRPD
200- 180- 160- 140- (Sjim 120- ti to - 100- Trol	0.00 71.02C 180.30C -5.00 132.82C	200 150 100	90 120 240 360	1:1	2-ethoxyethanol	Clear solutionTro1Clear solutionTro1SlurryTro1SlurryTro1SlurryTro1
y 80 - 60 - 60 - 60 - 60 - Febuxostat 40 - 20 - 0 7 Febuxostat Febuxostat 0 0 0 7 Febuxostat Febuxostat 6 8 10 12 14 16 18 20 22 24 26 28 2 2 14 16 18 20 22 24 26 28 2 2 12 14 16 18 20 22 24 26 28	-10.00 -15.00 -15.00 -15.00 -10.00 -186.68C 210.70C Febuxostat 100.00 Temp [C]	5 5 6 7 7 7 7 7 7 7 7	200 180 160 140 140 100 100 60 100 100 100 100 100	o1_240.xy	240 mg/mL	
XRPD pattern of Tro1 compared to the starting material (FEB) and Tromethamine	DSC trace of Tro1 compared to the starting material (FEB)	The dissolution curves of the Tro1 salt and the starting material (FEB) in water	$\begin{array}{c} 40 \\ 20 \\ 0 \\ 3 \\ 6 \\ 9 \\ 12 \\ 15 \\ 18 \\ 21 \\ 24 \\ 2\theta \left({\rm e} \right) \end{array}$	$\mathbf{Tro1} \rightarrow \mathbf{Conc.}$ $\mathbf{Tro1}$ $\mathbf{Tro1}$ $\mathbf{Tro1}$ $\mathbf{Tro1}$	90 mg/mL	120 mg/mL 240 mg/mL 360 mg/mL
Microscope images of Tro1	Starting material Febuxostat (Form G) Counter-ion Tromethamine Ration (FEB:Tro) 1:1 \checkmark grinding \checkmark grinding experiment \checkmark slow cooling- evaporative 2-ethoxyethanol THF New salt Tro1 Endothermic melting points 132.82°C 186.68°C Crystal/5 Solubility in Water 212.11 µg/mL Stability (40°C and 75% RH) Stable					
2. Febuxostat – Form A			2. Febuxostat – Form	A		
250 - 200 - (150 - (150 - 100 - 50 -	DSC mW 0.00 -5.00 10.00 -5.00		Concentration of FEB (mg/mL) 60 120 240 360	Solvent 2-ethoxyetha	Clears	after analysis at Crystal16 [™] Form by XRPDClear solutionForm Asolution + precipitate↓Form ASlurryForm ASlurryForm A
$\begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array}$	Heat -124.00 J/g 100.00 200.00 300.00 Temp [C]				390 300 370 360 340 330 310	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
XRPD pattern of form A compared to form G DSC trace of form A Microscope images of form A			······································	290 280 270 260 250	$\begin{array}{c} 360 \text{ mg/mL clear at} \rightarrow 87^{\circ}\text{C} \\ \hline \\ \hline \\ \hline \\ \end{array}$	
Starting material	Febuxostat (Form G)		10	optho.xy -	220 10 10 10 10 10 10 10 10 10 10 10 10 10	$\circ \circ \leftarrow 240 \text{ mg/mL clear at} \rightarrow 70^{\circ}\text{C}$
Experiment	✓ slow cooling-evaporative		90 Marine Marin	$\mathbf{Feb-ortho} \rightarrow \mathbf{Conc.}$	160	ted at→ 6.5°C
Temperatures	5°C, 25°C, 60°C		June 100 000 000 000 000 000 000 000 000 00	Feb-ortho \rightarrow Conc. 1 Feb-ortho \rightarrow Conc. 1	130 120	$\circ \bullet 120 \text{ mg/mL clear at} \rightarrow 47.6^{\circ}\text{C}$
Solvent	2-ethoxvethanol		30 The manual have the set		90 TTTT 80 TTTT 70 TT	

Conclusions

- * A novel salt and crystal form of FEB were obtained in a controlled manner using the Crystal16[™] platform.
- * Making use of the integrated transmission technology together with 16 parallel reactors at a volume of 1 mL, the Crystal16[™] easily allowed to assess salt and crystal formation.
- formation of **Tro1** and form **A** can be reliably crystallized in Search The 2-ethoxyethanol by using high starting concentrations: > 200 mg/mL for **Tro1**, respectively > **100 mg/mL** for form **A**.

References

[1] Groom C. R., Bruno I. J., Lightfoot M. P. and Ward S. C., "The Cambridge Structural Database", Acta Cryst., **2016**, *B72*, 171-179.

[2] Karimi-Jafari, M., Padrela, L., Walker, G. M., & Croker, D. M., Cryst. Growth Des., 2018, 18(10), 6370-6387. [3] Khalaji, M., Potrzebowski, M. J., & Dudek, M. K. Cryst. Growth Des., 2021, , 21(4), 2301-2314. [4] Li L. Y., Du R. K., Du Y. L., Zhang C. J., Guan S., Dong C. Z., Zhang L., *Crystals*, **2018**, *8* (2), 85. [5] Maddileti D., Jayabun S. K., Nangia A., Cryst. Growth Des., 2013, 13 (7), 3188-3196.

-Acknowledgement

The authors acknowledge financial support from the Ministry of Research and Innovation -MCI, Operational Program Competitiveness, POC Project 18/01.09.16, SMIS Code 105533.

We would like to thank Technobis Crystallization Systems BV for training and the opportunity to use the Crystal16^m device.