

13th International Conference Processes in Isotopes and Molecules PIM 2021

INVESTIGATION OF TIO₂/3D FREE-STANDING GRAPHENE NETWORKS

Cristina Banciu¹, Iulian Iordache¹, Elena Chițanu¹, Delia Pătroi¹, Gabriela Sbârcea¹, Virgil Marinescu¹, I Ion¹ and A Sobetkii² ¹ National Institute for Research and Development in Electrical Engineering ICPE-CA, 313 Splaiul Unirii, 030138, Bucharest 3, Romania, e-mail: <u>cristina.banciu@icpe-ca.ro</u>

² SC MGM STAR CONSTRUCT SRL, 7 Pâncota Street, 022773, Bucharest, Romania

SCOPE

- Graphene networks (GN) obtaining by CVD on nickel foam substrate.
- > TiO₂/3D free-standing graphene networks developing by using electron beam evaporation from TiO₂ granules to deposit titanium dioxide directly on the graphene networks.
- > TiO₂/3D free-standing graphene networks could be further used in photocatalysis, energy storage and a wide range of other applications.

EXPERIMENTAL

- Graphene networks were prepared by using nickel foam as the template in a CVD process at ambient pressure and 1000°C with methane as carbon source at atmospheric pressure for 60 minutes. In order to obtain the freestanding 3D graphene networks (3DGN), we proceeded to nickel foam etching in hydrochloric acid.
- □ TiO₂/3D free-standing graphene networks (3DGN-TiO₂) were developed using electron beam evaporation from TiO₂ granules to deposit titanium dioxide directly on the graphene networks.
- □ TiO₂ thin films were deposited by e-beam evaporation in a vacuum optical VU-2M installation (Russia). Titanium dioxide pieces of 99.99% purity, 1-4 mm, produced by Kurt J. Lesker Company were used for evaporation. The deposition was performed at room temperature at a pressure of 1x10⁻² Pa and an oxygen flow rate of 70 sccm, at a deposition rate of 0.5-1 Å/s and a rotation speed of 10 rot/min. The deposition thickness was 100 nm (~23 minutes deposition time), respectively 200 nm (~40 minutes deposition time).

TABLE 1. CVD process conditions for graphene networks preparation

Sample	Growing time (minutes)	Growing temperature (°C)	CH ₄ flow rate (sccm)	H ₂ flow rate (sccm)	Ar flow rate (slpm)
3DGN	60	1000	200	325	2

RESULTS

FIG. 1. SEM images and EDX of: a) 3DGN; b) 3DGN-TiO₂-100; c) 3DGN-TiO₂-200

FIG. 3. UV-visible absorption spectra recorded on 3DGN (blue), 3DGN-TiO₂-100 (red), 3DGN-TiO₂-200 (green)

CONCLUSIONS

- + TiO₂/3D free-standing graphene networks (3DGN-TiO₂) were successfully obtained by using a complex process that implies the electron beam evaporation technique to deposit titanium dioxide films directly on the graphene networks prepared previously by chemical vapour deposition on nickel foam.
- \Rightarrow From the XRD pattern it can be seen the specific diffraction peaks of graphene, but the TiO₂ films are amorphous and very thin and they could not be detected.
- \Rightarrow SEM images and the EDX spectra reveal the presence of amorphous TiO₂ thin films at the surface of the graphene networks.
- \Rightarrow By analyzing the UV-Vis spectra we found that the TiO₂/3D free-standing graphene networks present the specific peaks of TiO₂ and graphene in the range of 400-500 nm.
- \Rightarrow The absorption spectra of the TiO₂/3D free-standing graphene networks are much higher than that of the 3DGN for all UV-Vis region.
- \Rightarrow The TiO₂/3D free-standing graphene networks will be further heat treated in order to obtain crystalline TiO₂ thin layers for photocatalytic applications.

ACKNOWLEDGEMENT

This work has received funding from the Bilateral Collaboration Romania-Russia, project position 28 from the JINR Order no. 365/11.05.2021.