

The influence of the vacuum plasma treatment on the cotton surface deposited by TiO_2/TO_2 +graphene nanopowder water colloidal dispersions

A. O. Mateescu¹, G. Mateescu¹, I. Burducea¹, P. E Mereuță¹, C. Socaci, M. C. Rosu²

¹"Horia Hulubei" National Institute for Research and Development in Physics and Nuclear Engineering, 30 Reactorului Street, 077125 Măgurele, Ilfov, Romania ²National Institute of Materials Physics, 405A Atomiștilor Street, 077125 Măgurele, Ilfov, Romania ³National Institute for Research and Development of Isotopic and Molecular Technologies, 67-103 Donat, 400293 Cluj-Napoca, Romania

amateescu@niham.nipne.ro

Introduction

The influence of the vacuum plasma treatment on the deposited surfaces of cotton samples by their immersion in TiO_2 and TiO_2 +graphene water colloidal dispersions

Experimental

* Sample no.	0	1	2	3	4	
Type of Sample	Blank	** Immersed in TiO2 *** dispersion(1%)	**** Treated in vacuum plasma (air) → Immersed in TiO2 dispersion(1%)	Treated in vacuum plasma (air) → Immersed in TiO2 dispersion(1%) → Treated in vacuum plasma (air)	Immersed in TiO2 dispersion(1%) → Treated in vacuum plasma (air)	Cotton Distilated water In ultrasound bath 10 minutes - each side
Sample no.		5	6	7	8	
Type of Sample		Immersed in TiO2+Gr (9:1) dispersion(1%)	Treated in vacuum plasma (air) → Immersed in TiO2+Gr(9:1) dispersion(1%)	Treated in vacuum plasma (air) → Immersed in TiO2+Gr (9:1) dispersion(1%) → Treated in vacuum plasma (air)	Immersed in TiO2+Gr (9:1) dispersion (1%)→ Treated in vacuum plasma (ar)	

Vacuum plasma

treatment

Results

Conclusions

- By both investigation methods (SEM-EDS and RBS) of the samples that were treated after TiO₂ nanopowder deposition process by vacuum plasma one can observe a low reduction of the TiO₂ nanopowdwer quantity, which means, the low adherent to substrate TIO₂ nanoparticles were removed during this treatment, remaining only high adherent TiO₂ nanopowdwers on the cotton surface.
- Improvement of the TiO₂ nanopowdwers adherence to the substrate is due to the stimulative effect in creating chemical bonds between cotton substrate and TiO₂ nanoparticles as a result of the free radicals from substrate and electrical charged nanoparticles that generate stable chemical bonds by their high reactivity.

Acknowledgments: The research leading to these results has received funding from the Norwegian Financial Mechanism 2014 -2021, under Project RO-NO-0616, contract no. 29/2020.

