Surface interaction studies of novel 2D materials with gram-negative and gram-positive pathogens.

Jaber Adam¹, Maria Rosaria Del Sobro², Mohammadhassan Valadan³, Manjot Singh³, Carlo Altucci³

¹ Physics Department, University of Naples Federico II, Naples, Italy

² Instituto Statale d'Instruzione Superiore Leonardo da Vinci, Naples, Italy

³ Laboratory of Bio-Nano-Photonics, Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy

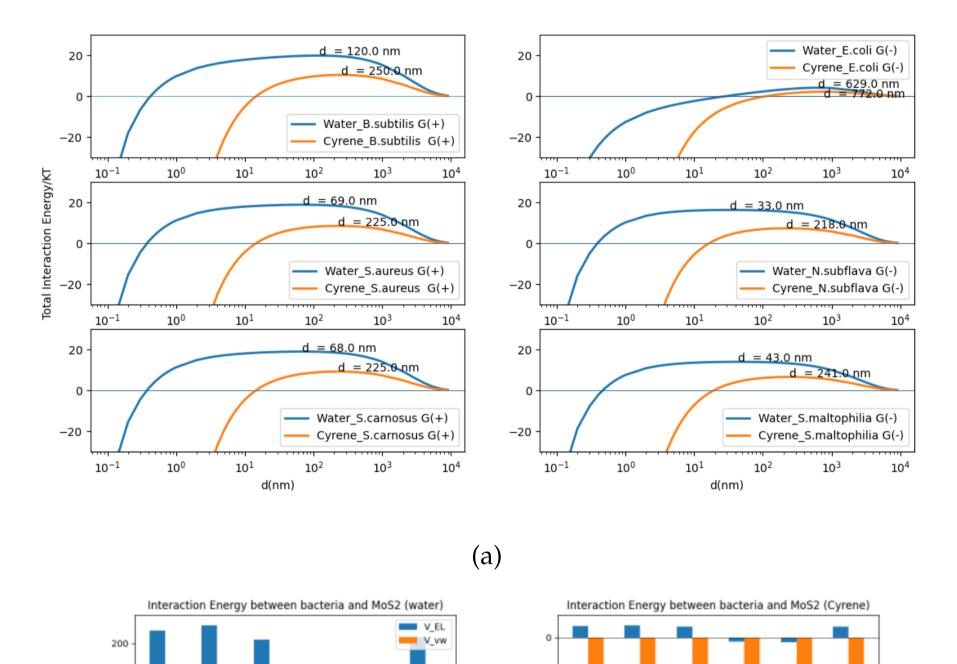
Abstract

The interaction between 2D-nanoflakes and bacteria in water based physiological liquids is a hot topic in biosciences. In this work we extend the DLVO theory, to the case of 2D-nanoflakes interacting with bacteria cell membranes, both for gram-positive and gram-negative bacteria. We study the role of the bacterial shape, membrane potential and 2D-materials nature. We calculate the interaction distances at equilibrium for different bacterial species and MoS_2 nanomaterials in Water and Cyrene.

Results and Discussion

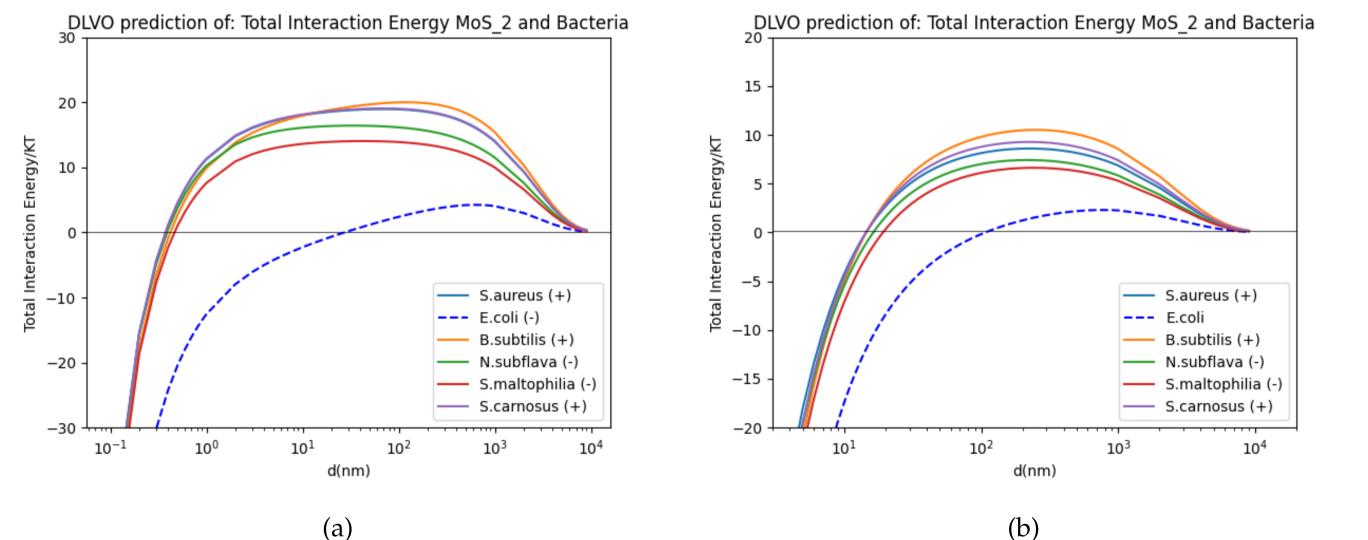
- The relation between **the total interaction energy** and **spacing** (*d nm*) between the **bacteria** and *MoS*₂ nanoflake for both **Water and Cyrene** Figure 1.
- **Higher** interaction of bacteria with **Water-based** solvent than that of **Cyrene** Figure 2 (a), mainly due to Water higher Hamaker constant.
- The **G+ bacteria** have **higher interaction energy** than **G-** due to the shape of bacteria and different *ζ*-potential (higher in the case of G+)Figure 1.
- Direct **proportionality** between the **interaction energy** and ζ **-potential** for both

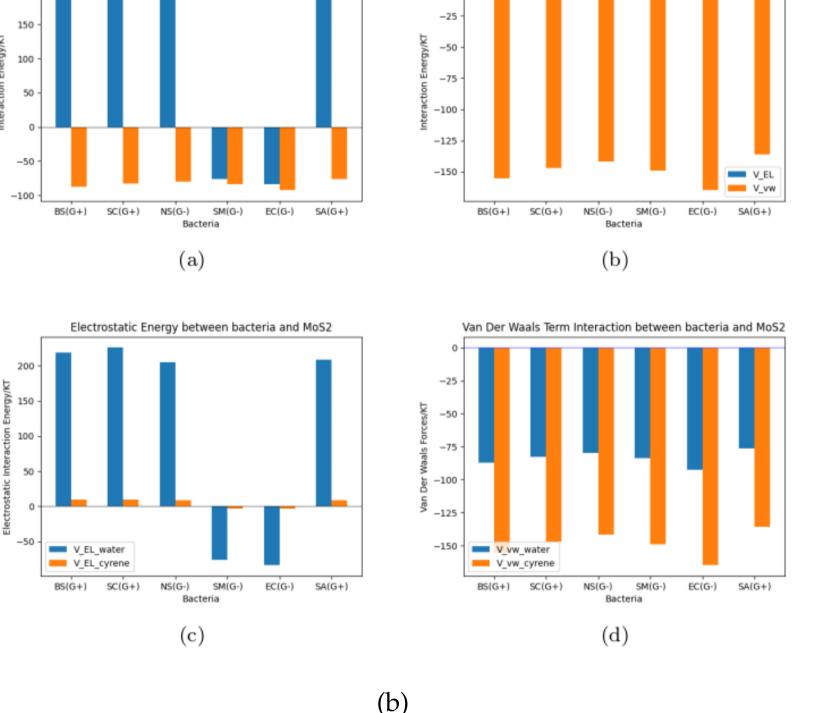
Introduction


The interaction of bacteria and nanoparticles¹ and with 2D-nanomaterials² are well studied. But still, there is more investigation needed—for example, studies of the interaction of different bacteria and different solvents. Here, we used DLVO (**Derjaguin-Landau-Verwey-Overbeek**)³ model to understand how different types of **bacteria** (Three **Gram-positive** and **Three Gram-negative**), interact with **2D-nanomaterials** (MoS_2) in two different solvents (**Water and Cyrene**), by studying surface **interaction energy**, and, how different characteristics of bacteria (such as ζ -potential and radius) affect their interaction energy.

Methodology

- **DLVO model** below equations (two main interactions, the attractive **van der Waals** ((V^{VW})) and the repulsive **electrostatic** (V^{EL})) equation below.
- Six bacteria strains (S.carnosus, S.maltophilia, N.subflava, B.subtilis, S.aureus and E.coli).
- *MoS*₂ nanoflake in two different green solvents (**Cyrene and Water**).
- The **critical volume** r_{crit}^3 (The critical volume around the bacteria where the attraction forces dominate)¹ is **calculated** by using below equation.


 $V^{tot} = V^{EL} + V^{VW}$


- bacteria type.
- This pattern of results is consistent with the previous literature¹.
- **The radius** in the **G+** bacteria is **directly** proportional to **energy**. While the **radius** in the **G-** bacteria is **inversely** proportional to the **energy**.
- In Figure 2 (b) we selected **a single value for the spacing (***d***)**, plotted and compared the *V*^{*vw*} and *V*^{*EL*} for each solvent.
- The *V^{EL}* term is **dominant** for **Water** and *V^{vw}* **dominant** for the case of **Cyrene** Figure 2(b).

DLVO prediction of: Total Interaction Energy MoS_2 and Bacteria

$$V^{EL} = \frac{\pi \epsilon a_1 a_2 (\zeta_1^2 + \zeta_1^2)}{(a_1 + a_2)} \left\{ \frac{2\zeta_1 \zeta_2}{\zeta_1^2 + \zeta_1^2} \ln \left[\frac{1 + exp(-kd)}{1 - exp(-kd)} \right] + \ln[1 - exp(-2kd)] \right\}$$
$$V^{VW} = -Aa_1 a_2 / 6d(a_1 + a_2)$$
$$r_{crit}^3 = (d_{max} + a_1)^3 - a_1^3$$

Figure 2: a) Comparison between Water and Cyrene based solvents MoS_2 -bacteria Total Interaction Energy b) V^{EL} and V^{vw} Interaction for Water and Cyrene (Upper panel), V^{EL} and V^{vw} for each solvents. (lower panel)

Conclusion/prospectives

We examined the surface interaction of **bacteria** and MoS_2 **2D-nanoflakes** based on **two solvents** using **DLVO model**. We found that G+ bacteria have **higher interaction energy** than G- bacteria. Water-based solvent MoS_2 nanoflake **interacts more** than Cyrene. We found that as the negative value of ζ -potential **increase**, interaction energy **increase** as well. And the critical volume, as well as Electrostatic and Van der Waals, was calculated. Also, in terms of **future research**, it would be helpful to extend the present findings by examining others solvents and other 2D-nanomaterials.

Figure 1: Total Interaction Energy of bacteria- MoS_2 for a) Water b) Cyrene.

	ζ -poten (mV)	$a_1(nm)$	$d_{water} (nm)$	d _{cyrene} nm	V ^{tot} _{water} /KT	V ^{tot} _{cyrene} /KT	$r_{crit_w}^3$
B.subtilis (G+)	-41.00	520	120.00	249.98	20.00	10.51	12.20
S.carnosus (G+)	-37.00	440	68.00	224.98	19.05	09.27	04.50
S.aureus (G+)	-37.10	360	69.00	224.98	18.96	08.59	03.23
N.subflava (G-)	-30.00	400	33.00	217.98	16.41	07.41	01.72
S.maltophilia (G-)) -26.00	460	43.00	240.98	14.03	06.62	02.99
E.coli (G-)	-12.70	630	629.00	771.98	04.23	02.30	175.0

Table 1: Summary of different bacteria results and characteristic.

References

