

Evaluation of *N*-doped graphene role in the photodegradation of sulfamethoxazole A Urda^{1,2}, C Socaci¹, T Radu¹, V Floare-Avram¹, D Cosma¹ and M C Rosu¹

A orda , o oocaci, i Rada , v rioarc-Avram, b oosma ana w o Rosa

¹National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103, RO-400293 Cluj-Napoca, Romania ²Faculty of Chemistry and Chemical Engineering, Department of Chemistry and SOOMCC, Babes-Bolyai University, 400028 Cluj-Napoca, Romania

Sulfamethoxazole is an emerging contaminant that is found in surface waters. In this study we followed its removal by means of adsorption and photocatalysis processes using materials based on N-doped graphene/TiO₂. These processes were monitored using liquid chromatography (HPLC, on a C18 column). The photocatalytic activity of the prepared materials was performed under UVA light (320-400 nm) and cold white light (420 – 800 nm) using a Luzchem LZC-4V photoreactor.

Preparation of TiO₂Ag-NGr

Morphological characterization of the TiO₂Ag-NGr composite

Characterization

TEM image of TiO_2Ag -NGr (bar = 50 nm).

Structural properties of TiO₂Ag-NGr

Element mapping images of TiO₂Ag-NGr revealing the distribution of N (magenta), Ti (yellow) and Ag (cyan) elements and the corresponding EDX spectrum.

Photoelectronic properties

VB XPS valence band spectra of TiO_2Ag (red line) and TiO_2Ag -NGr (black line).

Optical properties

Tauc plots of TiO_2Ag -NGr and its precursor, TiO_2Ag .

Photocatalytic performance in the degradation of sulfamethoxazole

I. UVA light-induced SMX photodegradation for the studied catalysts II. SMX photodegradation with visible light - Comparison of TiO₂Ag photocatalyst with or without nitrogen-doped graphene.

I.Adsorption isotherms of sulfamethoxazole onto $TiO_2Ag-NGr$. II. The Langmuir linearization fit for adsorption of SMX on $TiO_2Ag-NGr$. III. The Freundlich linearization fit for adsorption of SMX on $TiO_2Ag-NGr$.

The effect of initial sulfamethoxazole (SMX) concentration on the photodegradation process.

I.The effect of photocatalyst concentration on the adsorption / photodegradation process of SMX in the presence of visible light (II) 1st order kinetics.

The effect of reactive species on TiO₂Ag-NGrinduced SMX photodegradation and visible light. Band edge positions of studied photocatalysts relative to the energy levels of the redox couples involved in the oxidation of SMX.

CONCLUSIONS

VB XPS and UV-Vis spectroscopic results evidenced that its presence in the composite led to a narrower band gap energy of TiO₂Ag-NGr to 2.5 eV compared to 3.07 eV obtained for the TiO₂Ag material and consequently to the extension of the photocatalytic ability towards the visible light region. The results of the adsorption/photodegradation investigation indicated a very good efficiency in the optimized experimental conditions and under sunlight exposure. The experimental tests for the involved reactive species confirmed the role of the graphene doped with nitrogen as electron capturer in the composite, which is essential in the photocatalytic mechanism.

Acknowledgments: The financial support for this work was provided by the Romanian Ministry of Research and Innovation, program Nucleu, contract no. PN 19 35 02 02/2019.